Fibers of Polynomial Mappings Over

Ronen Peretz

Abstract

We find sufficient conditions on a polynomial mapping $f=\left(p_{1}, \ldots, p_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ to be surjective. One such a condition is the existence of a non-trivial solution of the induced homogeneous system of the equations $\sum_{j=1}^{n}\left(p_{j}\right)^{\alpha_{j}} g_{i j}=0, i=1, \ldots, n$. Here $\alpha_{j} \in \mathbb{Z}^{+}, g_{i j} \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ and $\operatorname{det}\left(g_{i j}\right)$ never vanishes on \mathbb{R}^{n}. A conclusion that follows is that if $\prod_{j=1}^{n}\left(\operatorname{deg} p_{j}\right)$ is an odd integer, then surjectivity $f\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$ follows if the homogeneous system $\overline{p_{1}}=\ldots=\overline{p_{n}}=0$ (\bar{p} is the highest homogeneous component of p) has only the trivial solution. We also investigate mappings f for which the determinant of their Jacobian matrix, det $J(f)$ never vanishes on \mathbb{R}^{n}. These polynomial mappings are in the core of the Real Jacobian Conjecture. One conclusion is that for such a local polynomial diffeomorphism the system $\overline{p_{j}} \overline{\overline{\partial p_{j}}} \frac{\overline{\partial X_{i}}}{}=0, i=1, \ldots, n$ must have non-trivial solutions, and for any $j=1, \ldots, n$. Also, such a local diffeomorphism is surjective if the induced homogeneous system of $\sum_{j=1}^{n} \alpha_{j}\left(p_{j}\right)^{\alpha_{j}-1} \frac{\partial p_{j}}{\partial X_{i}}=0$, $i=1, \ldots, n$, has only the trivial (zero) solution. These last two theorems give a new point of view on S . Pinchuk's solution of the Real Jacobian Conjecture. Other obvious applications of our results are for the existence of solutions of the corresponding polynomial equations in n unknowns over the real field, \mathbb{R}.

Keywords: Pinchuk polynomial mapping, polynomial mappings, surjective polynomial mappings, the Jacobian conjecture

I. THE RESULTS

Definition 1.1: Let $p\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$. We denote by $\bar{p}\left(X_{1}, \ldots, X_{n}\right)$ the leading homogeneous component of $p\left(X_{1}, \ldots, X_{n}\right)$ with respect to the standard grading, $\operatorname{deg} X_{j}=1$ for $1 \leq j \leq n$.

Theorem 1.2: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, f\left(X_{1}, \ldots, X_{n}\right)=$ $\left(p_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, p_{n}\left(X_{1}, \ldots, X_{n}\right)\right)$ be a polynomial mapping (i.e. $\left.\left(p_{1}, \ldots, p_{n}\right) \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]^{n}\right)$. Let $g_{i j}\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right], i, j=1, \ldots, n$. Let $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(\mathbb{Z}^{+}\right)^{n}$. We assume that the following 2 conditions hold true:
(i) The determinant $\operatorname{det}\left(g_{i j}\left(X_{1}, \ldots, X_{n}\right)\right)_{i, j=1, \ldots, n}$ never vanishes in \mathbb{R}^{n}.
(ii) The following system of n equations in n unknowns is such that the degree of each of the equations is an odd number:
$\sum_{j=1}^{n}\left(p_{j}\left(X_{1}, \ldots, X_{n}\right)\right)^{\alpha_{j}} g_{i j}\left(X_{1}, \ldots, X_{n}\right)=0, i=1, \ldots, n$.
(a) If the induced homogeneous system of the system (1):
$\overline{\sum_{j=1}^{n}\left(p_{j}\left(X_{1}, \ldots, X_{n}\right)\right)^{\alpha_{j}} g_{i j}\left(X_{1}, \ldots, X_{n}\right)}=0, \quad i=1, \ldots, n$,
has only the zero solution $\left(X_{1}, \ldots, X_{n}\right)=(0, \ldots, 0)$ over \mathbb{R}, then $f\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$.
(b) If the induced homogeneous system of the system in equation (1), i.e. the system (2) has only the zero solution over \mathbb{C}, then $\forall\left(a_{1}, \ldots, a_{2}\right) \in \mathbb{R}^{n}$, either $\left|f^{-1}\left(a_{1}, \ldots, a_{n}\right)\right|=\infty$ over \mathbb{C} under the extra assumption that $\operatorname{det}\left(g_{i j}\left(Z_{1}, \ldots, Z_{n}\right)\right)_{i, j=1, \ldots, n} \in \mathbb{R}^{\times}$, or there exists an integer $k=k\left(a_{1}, \ldots, a_{n}\right) \geq 0$ such that $\left|f^{-1}\left(a_{1}, \ldots, a_{n}\right)\right|=2 k+1$ over \mathbb{R}.

Proof.

(a) Let $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$. We will prove that $\left(a_{1}, \ldots, a_{n}\right) \in$ $f\left(\mathbb{R}^{n}\right)$. we consider the following system of equations:

$$
\begin{gather*}
X_{n+1}^{d_{i}} \sum_{j=1}^{n}\left(p_{j}\left(\frac{X_{1}}{X_{n+1}}, \ldots, \frac{X_{n}}{X_{n+1}}\right)-a_{j}\right)^{\alpha_{j}} \times \\
\times g_{i j}\left(\frac{X_{1}}{X_{n+1}}, \ldots, \frac{X_{n}}{X_{n+1}}\right)=0 \tag{3}
\end{gather*}
$$

$$
\text { where } \quad d_{i}=\operatorname{deg}\left(\sum_{j=1}^{n}\left(p_{j}\right)^{\alpha_{j}} g_{i j}\right), \quad i=1, \ldots, n
$$

This is a system of n homogeneous real polynomial equations in the $n+1$ unknowns $X_{1}, \ldots, X_{n}, X_{n+1}$, and by condition (ii) the degrees $d_{i}, i=1, \ldots, n$ of all of these equations are odd integers. By well known facts on varieties over \mathbb{R} (see pages 200-202 in [3]), it follows that the system (3) has a non-zero real solution $\left(X_{1}, \ldots, X_{n}, X_{n+1}\right)=$ $\left(X_{1}^{0}, \ldots, X_{n}^{0}, X_{n+1}^{0}\right)$. We must have $X_{n+1}^{0} \neq 0$, for otherwise $\left(X_{1}^{0}, \ldots, X_{n}^{0}\right) \neq(0, \ldots, 0)$ and $\left(X_{1}^{0}, \ldots, X_{n}^{0}\right)$ is a solution of (1),i.e. (2). This contradicts the assumption of the theorem in part (a). Thus we get from equation (3):

$$
\begin{gather*}
\sum_{j=1}^{n}\left(p_{j}\left(\frac{X_{1}^{0}}{X_{n+1}^{0}}, \ldots, \frac{X_{n}^{0}}{X_{n+1}^{0}}\right)-a_{j}\right)^{\alpha_{j}} \times \\
\times g_{i j}\left(\frac{X_{1}^{0}}{X_{n+1}^{0}}, \ldots, \frac{X_{n}^{0}}{X_{n+1}^{0}}\right)=0 \\
\text { for } i=1, \ldots, n \tag{4}
\end{gather*}
$$

By condition (i) of our theorem, this implies that

$$
f\left(\frac{X_{1}^{0}}{X_{n+1}^{0}}, \ldots, \frac{X_{n}^{0}}{X_{n+1}^{0}}\right)=\left(a_{1}, \ldots, a_{n}\right)
$$

(b) Let us consider the system (3) over \mathbb{C}. By the Bezout Theorem (see pages 198-199 in [3]), either the system (3) has infinitely many solutions over \mathbb{C}, or it has exactly

$$
\prod_{i=1}^{n} \operatorname{deg}\left(\sum_{j=1}^{n}\left(p_{j}\right)^{\alpha_{j}} g_{i j}\right)
$$

solutions over \mathbb{C}, counting multiplicities and not counting the zero solution. In the case we have infinitely many solutions over \mathbb{C}, we must have for each such a solution $\left(Z_{1}^{0}, \ldots, Z_{n}^{0}, Z_{n+1}^{0}\right)$ that $Z_{n+1}^{0} \neq 0$, for by the assumption in part (b) of our theorem, the induced homogeneous system (2), of the system (1) has only the zero solution over \mathbb{C}. Since we also assume in this case that $\operatorname{det}\left(g_{i j}\left(Z_{1}, \ldots, Z_{n}\right)\right)_{i, j=1, \ldots, n} \in \mathbb{C}^{\times}$it follows as before by equation (4) that the fiber over $\mathbb{C}, f^{-1}\left(a_{1}, \ldots, a_{n}\right)$ contains infinitely many points:

$$
\left(\frac{Z_{1}^{0}}{Z_{n+1}^{0}}, \ldots, \frac{Z_{n}^{0}}{Z_{n+1}^{0}}\right)
$$

In the second case, in which we have exactly

$$
\prod_{i=1}^{n} \operatorname{deg}\left(\sum_{j=1}^{n}\left(p_{j}\right)^{\alpha_{j}} g_{i j}\right)
$$

solutions over \mathbb{C}, noting that by condition (ii) this number is an odd integer and that non-real solutions $\left(Z_{1}^{0}, \ldots, Z_{n}^{0}, Z_{n+1}^{0}\right)$ come in conjugate pairs, we deduce that the fiber over $\mathbb{R}, f^{-1}\left(a_{1}, \ldots, a_{n}\right)$, contains an odd number of points.

Corollary 1.3: Let the polynomial mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, be given by

$$
f\left(X_{1}, \ldots, X_{n}\right)=\left(p_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, p_{n}\left(X_{1}, \ldots, X_{n}\right)\right)
$$

Let

$$
g_{i j}\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right], \quad i, j=1, \ldots, n
$$

Let $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(\mathbb{Z}^{+}\right)^{n}$. We assume that the following two conditions hold true:
(i) The determinant $\operatorname{det}\left(g_{i j}\left(X_{1}, \ldots, X_{n}\right)\right)_{i, j=1, \ldots, n}$ never vanishes in \mathbb{R}^{n}.
(ii) For each $i=1, \ldots, n$ the set $\left\{\alpha_{j} \operatorname{deg} p_{j}+\right.$ $\left.\operatorname{deg} g_{i j} \mid j=1, \ldots, n\right\}$ contains a unique maximal element $\alpha_{j(i)} \operatorname{deg} p_{j(i)}+\operatorname{deg} g_{i j(i)}$, which is an odd integer. We agree that $\operatorname{deg} 0=-\infty$.
Let us consider the following homogeneous system:

$$
\begin{equation*}
\bar{p}_{j(i)} \bar{g}_{i j(i)}=0, \quad i=1, \ldots, n \tag{5}
\end{equation*}
$$

Then the following two assertions are true:
(a) If the system (5) has only the zero solution over \mathbb{R}, then $f\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$.
(b) If the system (5) has only the zero solution over \mathbb{C}, then for any $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ either $\left|f^{-1}\left(a_{1}, \ldots, a_{n}\right)\right|=$ ∞ over \mathbb{C}, provided that also the following assumption holds true, $\left.\operatorname{det} g_{i j}\left(Z_{1}, \ldots, Z_{n}\right)\right)_{i, j=1, \ldots, n} \in \mathbb{R}^{\times}$, or that there exists an integer $k=k\left(a_{1}, \ldots, a_{n}\right) \geq 0$ such that $\left|f^{-1}\left(a_{1}, \ldots, a_{n}\right)\right|=2 k+1$ over \mathbb{R}.

Proof.

This is a special case of Theorem 0.2 , where the system (5) is precisely the system (2) because of the maximality and the uniqueness of $\alpha_{j(i)} \operatorname{deg} p_{j(i)}+\operatorname{deg} g_{i j(i)}$ among the elements of the set $\left\{\alpha_{j} \operatorname{deg} p_{j}+\operatorname{deg} g_{i j} \mid j=1, \ldots, n\right\}$.

Corollary 1.4: Let the polynomial mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, be given by
$f\left(X_{1}, \ldots, X_{n}\right)=\left(p_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, p_{n}\left(X_{1}, \ldots, X_{n}\right)\right)$.
Suppose that the product $\left(\operatorname{deg} p_{1}\right) \cdot \ldots \cdot\left(\operatorname{deg} p_{n}\right)$ is an odd integer. Then the following two assertions are true:
(a) If $\left|\bar{f}^{-1}(0, \ldots, 0)\right|=1$ over \mathbb{R}, then $f\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$.
(b) If $\left|\bar{f}^{-1}(0, \ldots, 0)\right|=1$ over \mathbb{C}, then $\forall\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$ either the fiber size $\left|f^{-1}\left(a_{1}, \ldots, a_{n}\right)\right|=\infty$ over \mathbb{C}, or there exists an integer $k=k\left(a_{1}, \ldots, a_{n}\right) \geq 0$ such that $\left|f^{-1}\left(a_{1}, \ldots, a_{n}\right)\right|=2 k+1$ over \mathbb{R}.

Proof.

This follows by Corollary 0.3 , where $\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ $(1, \ldots, 1)$ and where $g_{i j}=\delta_{i j}, i, j=1, \ldots, n$ because the system (5) becomes $\bar{p}_{j}=0, j=1, \ldots, n$ which has the solution set $\bar{f}^{-1}(0, \ldots, 0)$.

Remark 1.5: We note that if in Corollary 0.4 we have $\operatorname{deg} p_{j}=1, j=1, \ldots, n$, i.e. if all the $p_{j}=\bar{p}_{j}$ are linear forms then we get the well known fact from linear algebra.

Namely, if $A \bar{X}=\overline{0}$ is an $n \times n$ linear homogeneous system that has only the trivial solution, then $A \bar{X}=\bar{b}$ is consistent $\forall \bar{b} \in \mathbb{R}^{n}$.
Remark 1.6: If for $j=1, \ldots, n, b j \geq 0$ is an integer and if we have

$$
\begin{aligned}
& p_{j}\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} a_{i j} X_{i}^{2 b_{j}+1}+ \\
& + \text { elements of degrees }<2 b_{j}+1
\end{aligned}
$$

Then the polynomial mapping $f\left(X_{1}, \ldots, X_{n}\right)=$ $\left(p_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, p_{n}\left(X_{1}, \ldots, X_{n}\right)\right)$ is a surjective mapping, i.e. $f\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$, provided that the only solution of the following system:

$$
\sum_{i=1}^{n} a_{i j} X_{i}^{2 b_{j}+1}=0, \quad j=1, \ldots, n
$$

is the trivial solution: $X_{1}=\ldots=X_{n}=0$.
For in this case the above system is the system (5) of Corollary $0.4\left(g_{i j}=\delta_{i j}\right)$. For example, this is the case for the equal-degree case $b_{1}=\ldots=b_{n}=b$ provided that $\operatorname{det}\left(a_{i j}\right)_{i, j=1, \ldots, n} \neq 0$. Another example is the following: we pick 4 non-zero real numbers, a, b, c and d such that $\operatorname{sgn}(a d)=-\operatorname{sgn}(b c)$. Then any mapping of the form:

$$
\begin{gathered}
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
f(X, Y)=\left(a X^{2 k+1}+b Y^{2 k+1}+\ldots, c X^{2 j+1}+d Y^{2 j+1}+\ldots\right),
\end{gathered}
$$

is a surjective mapping. For the system (5) is:

$$
\left\{\begin{array}{l}
a X^{2 k+1}+b Y^{2 k+1}=0 \\
c X^{2 j+1}+d Y^{2 j+1}=0
\end{array} .\right.
$$

If $k \leq j$ then the system can be written as follows:

$$
\left\{\begin{array}{ll}
a X^{2 k+1}+b Y^{2 k+1} & =0 \\
\left(c X^{2(j-k)}\right) X^{2 k+1}+\left(d Y^{2(j-k)}\right) Y^{2 k+1} & =0
\end{array} .\right.
$$

We view this as a linear homogeneous system in the unknowns $X^{2 k+1}$ and $Y^{2 k+1}$. Then the coefficients matrix is:

$$
\left(\begin{array}{cc}
a & b \\
c X^{2(j-k)} & d Y^{2(j-k)}
\end{array}\right)
$$

The determinant of this matrix is $(a d) Y^{(2(j-k)}-$ (bc) $X^{2(j-k)}$ and this can not be 0 because of the assumption $\operatorname{sgn}(a d)=-\operatorname{sgn}(b c)$, unless $j>k$ and $X=Y=0$. In the other cases the only solution is, again, $X=Y=0$.
Theorem 1.7: Let $g_{i j}\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{R}\left[X_{1}, \ldots, X_{n}\right]$ for $i, j=1, \ldots, n$ satisfy the condition that

$$
\operatorname{det}\left(g_{i j}\left(X_{1}, \ldots, X_{n}\right)\right)_{i, j=1, \ldots, n}
$$

never vanishes in \mathbb{R}^{n}. Then for any $j_{0}, 1 \leq j_{0} \leq n$, such that the degrees $\operatorname{deg} g_{i j_{0}}, i=1, \ldots, n$ are all odd integers the system:

$$
\begin{equation*}
\bar{g}_{i j_{0}}\left(X_{1}, \ldots, X_{n}\right)=0, \quad i=1, \ldots, n \tag{6}
\end{equation*}
$$

has non-zero real solutions.

Proof.

Let j_{0} be such that the degrees $\operatorname{deg} g_{i j_{0}}, i=1, \ldots, n$, are all odd integers. In Corollary 0.3 we take the following:

$$
\begin{aligned}
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \quad f\left(X_{1}, \ldots, X_{n}\right) & =\left(\delta_{1 j_{0}}, \ldots, \delta_{j_{0} j_{0}}, \ldots, \delta_{n j_{0}}\right) \\
\text { and }\left(\alpha_{1}, \ldots, \alpha_{n}\right) & =(1, \ldots, 1) .
\end{aligned}
$$

Then conditions (i) and (ii) of Corollary 0.3 , with the choice $j(i)=j_{0}$ are satisfied. Since $f\left(\mathbb{R}^{n}\right) \neq \mathbb{R}^{n}$ it must be that the system (5) has non-zero solutions over \mathbb{R}. But in this case the system (5) coincides with the system above, (6).
Theorem 1.8: Let the polynomial mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, be given by
$f\left(X_{1}, \ldots, X_{n}\right)=\left(p_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, p_{n}\left(X_{1}, \ldots, X_{n}\right)\right)$.
Suppose that the determinant $\operatorname{det} J(f)\left(X_{1}, \ldots, X_{n}\right)$ never vanishes in \mathbb{R}^{n}. Then $\forall j, 1 \leq j \leq n$ the system:

$$
\begin{equation*}
\bar{p}_{j} \overline{\frac{\partial p_{j}}{\partial X_{i}}}=0, \quad i=1, \ldots, n \tag{7}
\end{equation*}
$$

has non-trivial solutions over \mathbb{R}.

Proof.

Let $j=j_{0}$ be such that the system (7) has only the zero solution over \mathbb{R}. We will arrive at a contradiction by showing that this assumption implies on the one hand, $f\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$, and it also implies, on the other hand, $f\left(\mathbb{R}^{n}\right) \neq \mathbb{R}^{n}$.

1) We first prove that $f\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$. To see that, we use Corollary 0.3 with:

$$
g_{i j}\left(X_{1}, \ldots, X_{n}\right)=\frac{\partial p_{j}}{\partial X_{i}} \quad \text { for } i, j=1, \ldots, n
$$

We can assume without losing the generality that:

$$
\begin{equation*}
\operatorname{deg} g_{i j_{0}}=\operatorname{deg} p_{j_{0}}-1, \quad i=1, \ldots, n \tag{8}
\end{equation*}
$$

For the assumptions of our theorem as well as the conclusion $f\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$, are invariant with respect to a real, nonsingular change of the variables. More precisely, instead of working with the original mapping, $f\left(X_{1}, \ldots, X_{n}\right)$, we could have, first performed a change of the variables, as follows:

$$
\begin{equation*}
X_{j}=\sum_{i=1}^{n} a_{i j} U_{i}, \quad j=1, \ldots, n \tag{9}
\end{equation*}
$$

where $\left(a_{i j}\right)_{i, j=1, \ldots, n}$ is a real non-singular matrix. Then we could have proved that the mapping given by $F\left(U_{1}, \ldots, U_{n}\right)=f\left(X_{1}, \ldots, X_{n}\right)$ is epimorphic and that would have implied that the original mapping $f\left(X_{1}, \ldots, X_{n}\right)$ is epimorphic. The linear transformation we choose in equation (9) is such that $a_{i j} \neq 0$ for all $i, j=1, \ldots, n$. With this choice of the linear transformation it is clear that generically (in the $a_{i j} \neq 0$), each of the components $\tilde{p}_{j}\left(U_{1}, \ldots, U_{n}\right)=p_{j}\left(X_{1}, \ldots, X_{n}\right)$, $j=1, \ldots, n$, of the mapping $F\left(U_{1}, \ldots, U_{n}\right)$ has the property that for each $i=1, \ldots, n$ it contains all the monomials of the form $a U_{1}^{m_{1}} \ldots U_{n}^{m_{n}}$ where $a \neq 0$, and where $\sum_{k=1}^{n} m_{k}=\operatorname{deg} p_{j}$, and $m_{i} \neq 0$. This justifies equation (8). Next we choose in Corollary 0.3 the following:

For $j \neq j_{0}$ we take $\alpha_{j}=1$. We choose the positive integer $\alpha_{j_{0}}$ so large that $\alpha_{j_{0}} \operatorname{deg} p_{j_{0}}+\left(\operatorname{deg} p_{j_{0}}-1\right)$ is strictly larger than $\operatorname{deg} p_{j}+\operatorname{deg} g_{i j}$ for $i=1, \ldots, n$ and $j \neq j_{0}$. Also $\alpha_{j_{0}}$ is such that $\alpha_{j_{0}} \operatorname{deg} p_{j_{0}}+\left(\operatorname{deg} p_{j_{0}}-1\right)$ is an odd integer. That is always possible to do: If $\operatorname{deg} p_{j_{0}}$ is an even integer, then there is no other restriction on $\alpha_{j_{0}}$ (except for being large enough). If $\operatorname{deg} p_{j_{0}}$ is an odd integer, then $\alpha_{j_{0}}$ must also be an odd integer. Now conditions (i) and (ii) of Corollary 0.3 are satisfied with $j(i)=j_{0}$. The system (5) Corollary 0.3 reduces to the system (7) with $j=j_{0}$ and so by part (a) of Corollary 0.3 it follows that $f\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$.
2) In order to conclude the proof of Theorem 0.8 , we now prove that the existence of such a j_{0} implies that $f\left(\mathbb{R}^{n}\right) \neq \mathbb{R}^{n}$. We may assume that $\bar{p}_{j_{0}}\left(X_{1}, \ldots, X_{n}\right) \geq$ $0 \forall\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{R}^{n}$, and there is an equality $\bar{p}_{j_{0}}\left(X_{1}^{0}, \ldots, X_{n}^{0}\right)=0$ if and only if $\left(X_{1}^{0}, \ldots, X_{n}^{0}\right)=$ $(0, \ldots, 0)$. Let us denote $d=\operatorname{deg} \bar{p}_{j_{0}}$. We claim that $\forall i$, $1 \leq i \leq n$ we have $\operatorname{deg}_{X_{i}} \bar{p}_{j_{0}}=d$:
For let $\bar{p}_{j_{0}}\left(X_{1}, \ldots, X_{n}\right)=\sum_{k=0}^{N} h_{k}\left(X_{1}, \ldots, \hat{X}_{i}, \ldots, X_{n}\right) X_{i}^{k}$ where h_{k} is an homogeneous polynomial in

$$
\left(X_{1}, \ldots, \hat{X}_{i}, \ldots, X_{n}\right)
$$

of degree $d-k$. Then $\bar{p}_{j_{0}}\left(0, \ldots, 0, X_{i}, 0, \ldots, 0\right) \equiv 0$ for any choice of X_{i} which is impossible. Hence we obtain:

$$
\begin{equation*}
\bar{p}_{j_{0}}\left(X_{1}, \ldots, X_{n}\right)=\sum_{i=1}^{n} \lambda_{i} X_{i}^{d}+h\left(X_{1}, \ldots, X_{n}\right) \tag{10}
\end{equation*}
$$

where $\lambda_{i}>0, \forall i, 1 \leq i \leq n$ and where h is homogeneous of degree d such that $\operatorname{deg}_{X_{i}} h<d$, $\forall i, 1 \leq i \leq n$. Since $\bar{p}_{j_{0}} \geq 0$ it follows that d is an even integer and now equation (10) implies the existence of an $M>0$ such that $\forall\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{R}^{n}$ we have $p_{j_{0}}\left(X_{1}, \ldots, X_{n}\right) \geq-M$. Hence we conclude that $f\left(\mathbb{R}^{n}\right) \neq \mathbb{R}^{n}$. Now the proof of the theorem is completed.

Theorem 1.9: Let the polynomial mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, be given by $f\left(X_{1}, \ldots, X_{n}\right)=\left(p_{1}\left(X_{1}, \ldots, X_{n}\right), \ldots, p_{n}\left(X_{1}, \ldots\right.\right.$ Suppose that the determinant $\operatorname{det} J(f)\left(X_{1}, \ldots, X_{n}\right)$ never vanishes in \mathbb{R}^{n}. If there is an even integral vector $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\left(2 \mathbb{Z}^{+}\right)^{n}$ such that the induced homogeneous system of:

$$
\begin{equation*}
\sum_{j=1}^{n} \alpha_{j} \cdot\left(p_{j}\left(X_{1}, \ldots, X_{n}\right)\right)^{\alpha_{j}-1} \frac{\partial p_{j}}{\partial X_{i}}=0, \quad i=1, \ldots, n \tag{11}
\end{equation*}
$$

has only the zero solution over \mathbb{R}, then $f\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$.

Proof.

Let us consider the following polynomial: $F\left(X_{1}, \ldots, X_{n}\right)=$ $\sum_{j=1}^{n}\left(p_{j}\left(X 1, \ldots, X_{n}\right)\right)^{\alpha_{j}}$. Since $p_{j}\left(X_{1}, \ldots, X_{n}\right) \in$ $\mathbb{R}\left[X_{1}, \ldots, X_{n}\right], \forall j=1, \ldots, n$ and since the vector $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is an even integral vector, it follows that $\operatorname{deg} F$ is an even integer. Say $\operatorname{deg} F=2 N$ for some $N \in \mathbb{Z}^{+}$. Clearly, the assumptions as well as the conclusion of Theorem 0.9 are invariant with respect to a real non-singular linear
change of the variables. Thus, as we explained in the proof of Theorem 0.8 we can assume that:

$$
\operatorname{deg}\left(\frac{\partial F}{\partial X_{i}}\right)=\operatorname{deg} F-1=2 N-1, \quad i=1, \ldots, n
$$

Let us take in Theorem 0.2:

$$
g_{i j}\left(X_{1}, \ldots, X_{n}\right)=\frac{\partial p_{j}}{\partial X_{i}}, \text { for } i, j=1, \ldots, n
$$

The vector of integers in Theorem 0.2 will be $\left(\alpha_{1}-\right.$ $1, \ldots, \alpha_{n}-1$), and the j 'th component of the mapping in Theorem 0.2 will be:

$$
\left(\alpha_{j}\right)^{1-\alpha_{j}^{-1}} p_{j}\left(X_{1}, \ldots, X_{n}\right)
$$

These satisfy the conditions (i) and (ii) of Theorem 0.2 and now part (a) of Theorem 0.2 implies that $f\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$.

Pinchuk's example. See [1], [2].
Pinchuk defined the following:

$$
t=x y-1, \quad s=1+x t, \quad h=t s, \quad f=s^{2}\left(t^{2}+y\right)
$$

and then set,

$$
p=h+f, \quad q=-t^{2}-6 t h(h+1)-u(f, h)
$$

where

$$
\begin{gathered}
u=A(h) f+B(h) \\
A=h+\frac{1}{45}(13+15 h)^{3} \\
B=4 h^{3}+6 h^{2}+\frac{1}{2} h^{2}+\frac{1}{2700}(13+15 h)^{4}
\end{gathered}
$$

Thus we have:

$$
\operatorname{deg} h=5, \quad \operatorname{deg} f=10, \quad \operatorname{deg} p=10, \quad \operatorname{deg} q=25
$$

Pinchuk's example is the following mapping:

$$
(p, q)=\left(x^{6} y^{4}-2 x^{5} y^{3}+\ldots, \frac{15^{3}}{45} x^{15} y^{10}+\ldots\right)
$$

We are interested only in the leading homogeneous components. Thus:

$$
\begin{gathered}
p=x^{6} y^{4}+\ldots, \quad \frac{\partial p}{\partial x}=6 x^{5} y^{4}+\ldots, \quad \frac{\partial p}{\partial y}=4 x^{6} y^{3}+\ldots \\
q=\frac{15^{3}}{45} x^{15} y^{10}+\ldots, \quad \frac{\partial q}{\partial x}= \\
=\frac{15^{4}}{45} x^{14} y^{10}+\ldots, \quad \frac{15^{3} \cdot 10}{45} x^{15} y^{9}+\ldots
\end{gathered}
$$

There are, in this case, two homogeneous systems of equations in (7) of Theorem 0.8:

$$
\bar{p} \frac{\partial \bar{p}}{\partial x}=\bar{p} \frac{\partial \bar{p}}{\partial y}=0
$$

and

$$
\bar{q} \frac{\partial \bar{q}}{\partial x}=\bar{q} \frac{\partial \bar{q}}{\partial y}=0
$$

These reduce to:

$$
\begin{aligned}
x^{11} y^{8} & =x^{12} y^{7} \\
x^{29} y^{20} & =x^{30} y^{19}
\end{aligned}=0 .
$$

Thus both systems have non-zero solutions:

$$
\{(0, y) \mid y \in \mathbb{R}\}=\{(x, 0) \mid x \in \mathbb{R}\}
$$

as should be the case according to Theorem 0.8. As for Theorem 0.9: we look at the system

$$
\begin{aligned}
& \alpha_{1} p(x, y)^{\alpha_{1}-1} \frac{\partial p}{\partial x}+\alpha_{2} q(x, y)^{\alpha_{2}-1} \frac{\partial q}{\partial x}=0 \\
& \alpha_{1} p(x, y)^{\alpha_{1}-1} \frac{\partial p}{\partial y}+\alpha_{2} q(x, y)^{\alpha_{2}-1} \frac{\partial q}{\partial y}=0
\end{aligned}
$$

then since it is well known that the image of Pinchuk's mapping (p, q) equals $\mathbb{R}^{2}-\left\{w_{0}, w_{1}\right\}$, the compliment of two points, the induced homogeneous system must have nontrivial solutions for any two even natural numbers α_{1} and α_{2}. Remark 1.10: The Pinchuk construction gives coordinates with a single element as their highest homogeneous component. This element has the form $\alpha x^{m} y^{k}$ where $\alpha \in \mathbb{R}^{\times}$, $m, k \geq 1$. Thus the equations in (7) of Theorem 0.8 are of the form:

$$
x^{m} y^{k} \cdot x^{m-1} y^{k}=x^{m} y^{k} \cdot x^{m} y^{k-1}=0
$$

i.e.

$$
x^{2 m-1} y^{2 k}=x^{2 m} y^{2 k-1}=0
$$

and so the solution set is the union of both axis:

$$
\{(0, y) \mid y \in \mathbb{R}\}=\{(x, 0) \mid x \in \mathbb{R}\}
$$

which, of course, is non-trivial in agreement with Theorem 0.8.

REFERENCES

[1] Arno van den Essen, Polynomial automorphisms and the Jacobian conjecture, volume 190 of Progress in Mathematics, Birkhäuser Verlag, Basel, 2000.
[2] S. Pinchuk, A counterexample to the strong real Jacobian conjecture, Math. Z., 217, pp 1-4, 1994.
[3] I. R. Shafarevich, Basic Algebraic Geometry, Verlag-Springer, 1970.

