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ABSTRACT We find sufficient conditions on a polynomial mapping f = (p1, . . . , pn) : Rn → Rn to be
surjective. One such a condition is the existence of a non-trivial solution of the induced homogeneous system
of the equations

∑n
j=1(pj)

αjgij = 0, i = 1, . . . , n. Here αj ∈ Z+, gij ∈ R[X1, . . . , Xn] and det (gij)
never vanishes on Rn. A conclusion that follows is that if

∏n
j=1(deg pj) is an odd integer, then surjectivity

f(Rn) = Rn follows if the homogeneous system p1 = . . . = pn = 0 (p is the highest homogeneous
component of p) has only the trivial solution. We also investigate mappings f for which the determinant
of their Jacobian matrix, det J(f) never vanishes on Rn. These polynomial mappings are in the core
of the Real Jacobian Conjecture. One conclusion is that for such a local polynomial diffeomorphism the
system pj

∂pj
∂Xi

= 0, i = 1, . . . , n must have non-trivial solutions, and for any j = 1, . . . , n. Also, such
a local diffeomorphism is surjective if the induced homogeneous system of

∑n
j=1 αj(pj)

αj−1 ∂pj
∂Xi

= 0,
i = 1, . . . , n, has only the trivial (zero) solution. These last two theorems give a new point of view on S.
Pinchuk’s solution of the Real Jacobian Conjecture. Other obvious applications of our results are for the
existence of solutions of the corresponding polynomial equations in n unknowns over the real field, R.

INDEX TERMS Pinchuk polynomial mapping, polynomial mappings, surjective polynomial mappings,
the Jacobian conjecture

I. THE RESULTS

Definition 1.1: Let p(X1, . . . , Xn) ∈ R[X1, . . . , Xn]. We
denote by p(X1, . . . , Xn) the leading homogeneous compo-
nent of p(X1, . . . , Xn) with respect to the standard grading,
degXj = 1 for 1 ≤ j ≤ n.

Theorem 1.2: Let f : Rn → Rn, f(X1, . . . , Xn) =
(p1(X1, . . . , Xn), . . . , pn(X1, . . . , Xn)) be a polynomial
mapping (i.e. (p1, . . . , pn) ∈ R[X1, . . . , Xn]

n). Let
gij(X1, . . . , Xn) ∈ R[X1, . . . , Xn], i, j = 1, . . . , n. Let
(α1, . . . , αn) ∈ (Z+)n. We assume that the following 2
conditions hold true:
(i) The determinant det (gij(X1, . . . , Xn))i,j=1,...,n never
vanishes in Rn.
(ii) The following system of n equations in n unknowns
is such that the degree of each of the equations is an odd
number:

n∑
j=1

(pj(X1, . . . , Xn))
αj gij(X1, . . . , Xn) = 0, i = 1, . . . , n.

(1)
Then the following 2 assertions are true:

(a) If the induced homogeneous system of the system (1):

n∑
j=1

(pj(X1, . . . , Xn))
αj gij(X1, . . . , Xn) = 0, i = 1, . . . , n,

(2)
has only the zero solution (X1, . . . , Xn) = (0, . . . , 0) over
R, then f(Rn) = Rn.
(b) If the induced homogeneous system of the sys-
tem in equation (1), i.e. the system (2) has only the
zero solution over C, then ∀ (a1, . . . , a2) ∈ Rn, either
|f−1(a1, . . . , an)| = ∞ over C under the extra assump-
tion that det (gij(Z1, . . . , Zn))i,j=1,...,n ∈ R×, or there
exists an integer k = k(a1, . . . , an) ≥ 0 such that
|f−1(a1, . . . , an)| = 2k + 1 over R.
Proof.
(a) Let (a1, . . . , an) ∈ Rn. We will prove that (a1, . . . , an) ∈
f(Rn). we consider the following system of equations:

Xdi
n+1

n∑
j=1

(
pj

(
X1

Xn+1
, . . . ,

Xn

Xn+1

)
− aj

)αj

×

×gij
(

X1

Xn+1
, . . . ,

Xn

Xn+1

)
= 0,

(3)
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where di = deg

 n∑
j=1

(pj)
αj gij

 , i = 1, . . . , n.

This is a system of n homogeneous real polynomial equations
in the n+ 1 unknowns X1, . . . , Xn, Xn+1, and by condition
(ii) the degrees di, i = 1, . . . , n of all of these equations
are odd integers. By well known facts on varieties over
R (see pages 200-202 in [3]), it follows that the system
(3) has a non-zero real solution (X1, . . . , Xn, Xn+1) =
(X0

1 , . . . , X
0
n, X

0
n+1). We must have X0

n+1 6= 0, for oth-
erwise (X0

1 , . . . , X
0
n) 6= (0, . . . , 0) and (X0

1 , . . . , X
0
n) is a

solution of (1),i.e. (2). This contradicts the assumption of the
theorem in part (a). Thus we get from equation (3):

n∑
j=1

(
pj

(
X0

1

X0
n+1

, . . . ,
X0
n

X0
n+1

)
− aj

)αj

×

×gij
(

X0
1

X0
n+1

, . . . ,
X0
n

X0
n+1

)
= 0,

for i = 1, . . . , n. (4)

By condition (i) of our theorem, this implies that

f

(
X0

1

X0
n+1

, . . . ,
X0
n

X0
n+1

)
= (a1, . . . , an).

(b) Let us consider the system (3) over C. By the Bezout
Theorem (see pages 198-199 in [3]), either the system (3)
has infinitely many solutions over C, or it has exactly

n∏
i=1

deg

 n∑
j=1

(pj)
αjgij


solutions over C, counting multiplicities and not counting
the zero solution. In the case we have infinitely many
solutions over C, we must have for each such a solu-
tion (Z0

1 , . . . , Z
0
n, Z

0
n+1) that Z0

n+1 6= 0, for by the as-
sumption in part (b) of our theorem, the induced homo-
geneous system (2), of the system (1) has only the zero
solution over C. Since we also assume in this case that
det(gij(Z1, . . . , Zn))i,j=1,...,n ∈ C× it follows as before by
equation (4) that the fiber over C, f−1(a1, . . . , an) contains
infinitely many points:(

Z0
1

Z0
n+1

, . . . ,
Z0
n

Z0
n+1

)
.

In the second case, in which we have exactly

n∏
i=1

deg

 n∑
j=1

(pj)
αjgij


solutions over C, noting that by condition (ii) this
number is an odd integer and that non-real solutions
(Z0

1 , . . . , Z
0
n, Z

0
n+1) come in conjugate pairs, we deduce that

the fiber over R, f−1(a1, . . . , an), contains an odd number
of points. �

Corollary 1.3: Let the polynomial mapping f : Rn → Rn,
be given by

f(X1, . . . , Xn) = (p1(X1, . . . , Xn), . . . , pn(X1, . . . , Xn)).

Let

gij(X1, . . . , Xn) ∈ R[X1, . . . , Xn], i, j = 1, . . . , n.

Let (α1, . . . , αn) ∈ (Z+)
n. We assume that the following

two conditions hold true:
(i) The determinant det (gij(X1, . . . , Xn))i,j=1,...,n never
vanishes in Rn.
(ii) For each i = 1, . . . , n the set {αj deg pj +
deg gij | j = 1, . . . , n} contains a unique maximal element
αj(i) deg pj(i)+deg gij(i), which is an odd integer. We agree
that deg 0 = −∞.
Let us consider the following homogeneous system:

pj(i)gij(i) = 0, i = 1, . . . , n. (5)

Then the following two assertions are true:
(a) If the system (5) has only the zero solution over R, then
f(Rn) = Rn.
(b) If the system (5) has only the zero solution over C,
then for any (a1, . . . , an) ∈ Rn either |f−1(a1, . . . , an)| =
∞ over C, provided that also the following assumption
holds true, det gij(Z1, . . . , Zn))i,j=1,...,n ∈ R×, or that
there exists an integer k = k(a1, . . . , an) ≥ 0 such that
|f−1(a1, . . . , an)| = 2k + 1 over R.
Proof.
This is a special case of Theorem 0.2, where the system (5)
is precisely the system (2) because of the maximality and the
uniqueness of αj(i) deg pj(i)+deg gij(i) among the elements
of the set {αj deg pj + deg gij | j = 1, . . . , n}. �

Corollary 1.4: Let the polynomial mapping f : Rn → Rn,
be given by

f(X1, . . . , Xn) = (p1(X1, . . . , Xn), . . . , pn(X1, . . . , Xn)).

Suppose that the product (deg p1) · . . . · (deg pn) is an odd
integer. Then the following two assertions are true:
(a) If |f−1

(0, . . . , 0)| = 1 over R, then f(Rn) = Rn.
(b) If |f−1

(0, . . . , 0)| = 1 over C, then ∀ (a1, . . . , an) ∈ Rn
either the fiber size |f−1(a1, . . . , an)| = ∞ over C, or
there exists an integer k = k(a1, . . . , an) ≥ 0 such that
|f−1(a1, . . . , an)| = 2k + 1 over R.
Proof.
This follows by Corollary 0.3, where (α1, . . . , αn) =
(1, . . . , 1) and where gij = δij , i, j = 1, . . . , n because the
system (5) becomes pj = 0, j = 1, . . . , n which has the
solution set f

−1
(0, . . . , 0). �

Remark 1.5: We note that if in Corollary 0.4 we have
deg pj = 1, j = 1, . . . , n, i.e. if all the pj = pj are linear
forms then we get the well known fact from linear algebra.

2 VOLUME 4, 2016

INTERNATIONAL JOURNAL OF PURE MATHEMATICS Volume 5, 2018

ISSN: 2313-0571 25



Ronen Peretz : Fibers of Polynomial Mappings Over Rn

Namely, if AX = 0 is an n× n linear homogeneous system
that has only the trivial solution, then AX = b is consistent
∀ b ∈ Rn.
Remark 1.6: If for j = 1, . . . , n, bj ≥ 0 is an integer and if
we have

pj(X1, . . . , Xn) =
n∑
i=1

aijX
2bj+1
i +

+elements of degrees < 2bj + 1.

Then the polynomial mapping f(X1, . . . , Xn) =
(p1(X1, . . . , Xn), . . . , pn(X1, . . . , Xn)) is a surjective map-
ping, i.e. f(Rn) = Rn, provided that the only solution of the
following system:

n∑
i=1

aijX
2bj+1
i = 0, j = 1, . . . , n,

is the trivial solution: X1 = . . . = Xn = 0.
For in this case the above system is the system (5) of
Corollary 0.4 (gij = δij). For example, this is the case for
the equal-degree case b1 = . . . = bn = b provided that
det(aij)i,j=1,...,n 6= 0. Another example is the following:
we pick 4 non-zero real numbers, a, b, c and d such that
sgn(ad) = −sgn(bc). Then any mapping of the form:

f : R2 → R2,

f(X,Y ) = (aX2k+1+bY 2k+1+. . . , cX2j+1+dY 2j+1+. . .),

is a surjective mapping. For the system (5) is:{
aX2k+1 + bY 2k+1 = 0
cX2j+1 + dY 2j+1 = 0

.

If k ≤ j then the system can be written as follows:{
aX2k+1 + bY 2k+1 = 0
(cX2(j−k))X2k+1 + (dY 2(j−k))Y 2k+1 = 0

.

We view this as a linear homogeneous system in the un-
knowns X2k+1 and Y 2k+1. Then the coefficients matrix is:(

a b
cX2(j−k) dY 2(j−k)

)
.

The determinant of this matrix is (ad)Y (2(j−k) −
(bc)X2(j−k) and this can not be 0 because of the assumption
sgn(ad) = −sgn(bc), unless j > k and X = Y = 0. In the
other cases the only solution is, again, X = Y = 0.
Theorem 1.7: Let gij(X1, . . . , Xn) ∈ R[X1, . . . , Xn] for
i, j = 1, . . . , n satisfy the condition that

det(gij(X1, . . . , Xn))i,j=1,...,n

never vanishes in Rn. Then for any j0, 1 ≤ j0 ≤ n, such
that the degrees deg gij0 , i = 1, . . . , n are all odd integers
the system:

gij0(X1, . . . , Xn) = 0, i = 1, . . . , n, (6)

has non-zero real solutions.

Proof.
Let j0 be such that the degrees deg gij0 , i = 1, . . . , n, are all
odd integers. In Corollary 0.3 we take the following:

f : Rn → Rn, f(X1, . . . , Xn) = (δ1j0 , . . . , δj0j0 , . . . , δnj0).

and (α1, . . . , αn) = (1, . . . , 1).

Then conditions (i) and (ii) of Corollary 0.3, with the choice
j(i) = j0 are satisfied. Since f(Rn) 6= Rn it must be that the
system (5) has non-zero solutions over R. But in this case the
system (5) coincides with the system above, (6). �
Theorem 1.8: Let the polynomial mapping f : Rn → Rn, be
given by

f(X1, . . . , Xn) = (p1(X1, . . . , Xn), . . . , pn(X1, . . . , Xn)).

Suppose that the determinant det J(f)(X1, . . . , Xn) never
vanishes in Rn. Then ∀ j, 1 ≤ j ≤ n the system:

pj
∂pj
∂Xi

= 0, i = 1, . . . , n, (7)

has non-trivial solutions over R.
Proof.
Let j = j0 be such that the system (7) has only the zero
solution over R. We will arrive at a contradiction by showing
that this assumption implies on the one hand, f(Rn) = Rn,
and it also implies, on the other hand, f(Rn) 6= Rn.
1) We first prove that f(Rn) = Rn. To see that, we use
Corollary 0.3 with:

gij(X1, . . . , Xn) =
∂pj
∂Xi

for i, j = 1, . . . , n.

We can assume without losing the generality that:

deg gij0 = deg pj0 − 1, i = 1, . . . , n. (8)

For the assumptions of our theorem as well as the conclusion
f(Rn) = Rn, are invariant with respect to a real, non-
singular change of the variables. More precisely, instead
of working with the original mapping, f(X1, . . . , Xn), we
could have, first performed a change of the variables, as
follows:

Xj =
n∑
i=1

aijUi, j = 1, . . . , n, (9)

where (aij)i,j=1,...,n is a real non-singular matrix. Then
we could have proved that the mapping given by
F (U1, . . . , Un) = f(X1, . . . , Xn) is epimorphic and
that would have implied that the original mapping
f(X1, . . . , Xn) is epimorphic. The linear transformation
we choose in equation (9) is such that aij 6= 0 for all
i, j = 1, . . . , n. With this choice of the linear transfor-
mation it is clear that generically (in the aij 6= 0), each
of the components p̃j(U1, . . . , Un) = pj(X1, . . . , Xn),
j = 1, . . . , n, of the mapping F (U1, . . . , Un) has the
property that for each i = 1, . . . , n it contains all the
monomials of the form aUm1

1 . . . Umn
n where a 6= 0, and

where
∑n
k=1mk = deg pj , and mi 6= 0. This justifies

equation (8). Next we choose in Corollary 0.3 the following:
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For j 6= j0 we take αj = 1. We choose the positive integer
αj0 so large that αj0 deg pj0 + (deg pj0 − 1) is strictly larger
than deg pj+deg gij for i = 1, . . . , n and j 6= j0. Also αj0 is
such that αj0 deg pj0 + (deg pj0 − 1) is an odd integer. That
is always possible to do: If deg pj0 is an even integer, then
there is no other restriction on αj0 (except for being large
enough). If deg pj0 is an odd integer, then αj0 must also be
an odd integer. Now conditions (i) and (ii) of Corollary 0.3
are satisfied with j(i) = j0. The system (5) Corollary 0.3
reduces to the system (7) with j = j0 and so by part (a) of
Corollary 0.3 it follows that f(Rn) = Rn.
2) In order to conclude the proof of Theorem 0.8, we
now prove that the existence of such a j0 implies that
f(Rn) 6= Rn. We may assume that pj0(X1, . . . , Xn) ≥
0 ∀ (X1, . . . , Xn) ∈ Rn, and there is an equality
pj0(X

0
1 , . . . , X

0
n) = 0 if and only if (X0

1 , . . . , X
0
n) =

(0, . . . , 0). Let us denote d = deg pj0 . We claim that ∀ i,
1 ≤ i ≤ n we have degXi

pj0 = d:
For let pj0(X1, . . . , Xn) =

∑N
k=0 hk(X1, . . . , X̂i, . . . , Xn)X

k
i

where hk is an homogeneous polynomial in

(X1, . . . , X̂i, . . . , Xn)

of degree d−k. Then pj0(0, . . . , 0, Xi, 0, . . . , 0) ≡ 0 for any
choice of Xi which is impossible. Hence we obtain:

pj0(X1, . . . , Xn) =
n∑
i=1

λiX
d
i + h(X1, . . . , Xn), (10)

where λi > 0, ∀ i, 1 ≤ i ≤ n and where h is homogeneous
of degree d such that degXi

h < d, ∀ i, 1 ≤ i ≤ n.
Since pj0 ≥ 0 it follows that d is an even integer and now
equation (10) implies the existence of an M > 0 such that
∀ (X1, . . . , Xn) ∈ Rn we have pj0(X1, . . . , Xn) ≥ −M .
Hence we conclude that f(Rn) 6= Rn. Now the proof of the
theorem is completed. �

Theorem 1.9: Let the polynomial mapping f : Rn → Rn, be
given by f(X1, . . . , Xn) = (p1(X1, . . . , Xn), . . . , pn(X1, . . . , Xn)).
Suppose that the determinant det J(f)(X1, . . . , Xn) never
vanishes in Rn. If there is an even integral vector
(α1, . . . , αn) ∈ (2Z+)n such that the induced homogeneous
system of:

n∑
j=1

αj · (pj(X1, . . . , Xn))
αj−1 ∂pj

∂Xi
= 0, i = 1, . . . , n,

(11)
has only the zero solution over R, then f(Rn) = Rn.
Proof.
Let us consider the following polynomial: F (X1, . . . , Xn) =∑n
j=1 (pj(X1, . . . , Xn))

αj . Since pj(X1, . . . , Xn) ∈
R[X1, . . . , Xn], ∀ j = 1, . . . , n and since the vector
(α1, . . . , αn) is an even integral vector, it follows that degF
is an even integer. Say degF = 2N for some N ∈ Z+.
Clearly, the assumptions as well as the conclusion of Theo-
rem 0.9 are invariant with respect to a real non-singular linear

change of the variables. Thus, as we explained in the proof
of Theorem 0.8 we can assume that:

deg

(
∂F

∂Xi

)
= degF − 1 = 2N − 1, i = 1, . . . , n.

Let us take in Theorem 0.2:

gij(X1, . . . , Xn) =
∂pj
∂Xi

, for i, j = 1, . . . , n.

The vector of integers in Theorem 0.2 will be (α1 −
1, . . . , αn − 1), and the j’th component of the mapping in
Theorem 0.2 will be:

(αj)
1−α−1

j pj(X1, . . . , Xn).

These satisfy the conditions (i) and (ii) of Theorem 0.2 and
now part (a) of Theorem 0.2 implies that f(Rn) = Rn. �

Pinchuk’s example. See [1], [2].
Pinchuk defined the following:

t = xy − 1, s = 1 + xt, h = ts, f = s2(t2 + y),

and then set,

p = h+ f, q = −t2 − 6th(h+ 1)− u(f, h),

where
u = A(h)f +B(h),

A = h+
1

45
(13 + 15h)3,

B = 4h3 + 6h2 +
1

2
h2 +

1

2700
(13 + 15h)4.

Thus we have:

deg h = 5, deg f = 10, deg p = 10, deg q = 25.

Pinchuk’s example is the following mapping:

(p, q) = (x6y4 − 2x5y3 + . . . ,
153

45
x15y10 + . . .).

We are interested only in the leading homogeneous compo-
nents. Thus:

p = x6y4 + . . . ,
∂p

∂x
= 6x5y4 + . . . ,

∂p

∂y
= 4x6y3 + . . . .

q =
153

45
x15y10 + . . . ,

∂q

∂x
=

=
154

45
x14y10 + . . . ,

153 · 10
45

x15y9 + . . . .

There are, in this case, two homogeneous systems of equa-
tions in (7) of Theorem 0.8:

p
∂p

∂x
= p

∂p

∂y
= 0,

and
q
∂q

∂x
= q

∂q

∂y
= 0.
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These reduce to:

x11y8 = x12y7 = 0
x29y20 = x30y19 = 0

.

Thus both systems have non-zero solutions:

{(0, y) | y ∈ R} = {(x, 0) |x ∈ R},

as should be the case according to Theorem 0.8. As for
Theorem 0.9: we look at the system

α1p(x, y)
α1−1 ∂p

∂x
+ α2q(x, y)

α2−1 ∂q

∂x
= 0

α1p(x, y)
α1−1 ∂p

∂y
+ α2q(x, y)

α2−1 ∂q

∂y
= 0

then since it is well known that the image of Pinchuk’s
mapping (p, q) equals R2 − {w0, w1}, the compliment of
two points, the induced homogeneous system must have non-
trivial solutions for any two even natural numbers α1 and α2.
Remark 1.10: The Pinchuk construction gives coordinates
with a single element as their highest homogeneous com-
ponent. This element has the form αxmyk where α ∈ R×,
m, k ≥ 1. Thus the equations in (7) of Theorem 0.8 are of
the form:

xmyk · xm−1yk = xmyk · xmyk−1 = 0,

i.e.
x2m−1y2k = x2my2k−1 = 0,

and so the solution set is the union of both axis:

{(0, y) | y ∈ R} = {(x, 0) |x ∈ R},

which, of course, is non-trivial in agreement with Theorem
0.8.
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